Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
bioRxiv ; 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37808638

ABSTRACT

Nirmatrelvir was the first protease inhibitor (PI) specifically developed against the SARS-CoV-2 main protease (3CLpro/Mpro) and licensed for clinical use. As SARS-CoV-2 continues to spread, variants resistant to nirmatrelvir and other currently available treatments are likely to arise. This study aimed to identify and characterize mutations that confer resistance to nirmatrelvir. To safely generate Mpro resistance mutations, we passaged a previously developed, chimeric vesicular stomatitis virus (VSV-Mpro) with increasing, yet suboptimal concentrations of nirmatrelvir. Using Wuhan-1 and Omicron Mpro variants, we selected a large set of mutants. Some mutations are frequently present in GISAID, suggesting their relevance in SARS-CoV-2. The resistance phenotype of a subset of mutations was characterized against clinically available PIs (nirmatrelvir and ensitrelvir) with cell-based and biochemical assays. Moreover, we showed the putative molecular mechanism of resistance based on in silico molecular modelling. These findings have implications on the development of future generation Mpro inhibitors, will help to understand SARS-CoV-2 protease-inhibitor-resistance mechanisms and show the relevance of specific mutations in the clinic, thereby informing treatment decisions.

2.
Commun Biol ; 6(1): 720, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443295

ABSTRACT

We report an Osprey-based computational protocol to prospectively identify oncogenic mutations that act via disruption of molecular interactions. It is applicable to analyse both protein-protein and protein-DNA interfaces and it is validated on a dataset of clinically relevant mutations. In addition, it is used to predict previously uncharacterised patient mutations in CDK6 and p16 genes, which are experimentally confirmed to impair complex formation.


Subject(s)
DNA , Proteins , Humans , Proteins/genetics , Mutation , DNA/genetics
3.
Arch Pharm (Weinheim) ; 356(7): e2200638, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37173820

ABSTRACT

One-third of breast cancer patients will develop recurrent cancer within 15 years of endocrine treatment. Notably, tumor growth in a hormone-refractory state still relies on the interaction between estrogen receptor alpha (ERα) and upregulated coactivators. Herein, we suggest that simultaneous targeting of the primary ligand binding site (LBS) and the coactivator binding site (CABS) at ERα represents a promising alternative therapeutic strategy to overcome mutation-driven resistance in breast cancer. We synthesized two series of compounds that connect the LBS-binder (E)-3-{4-[8-fluoro-4-(4-hydroxyphenyl)-2,3-dihydrobenzo[b]oxepin-5-yl]phenyl}acrylic acid 8 with the coactivator binding site inhibitors (CBIs) 4,6-bis(isobutyl(methyl)amino)pyrimidine or 3-(5-methoxy-1H-benzo[d]imidazol-2-yl)propanoic acid via covalent linkage. The most active benzoxepine-pyrimidine conjugate 31 showed strong inhibition of estradiol-induced transactivation (IC50 = 18.2 nM (ERα) and 61.7 nM (ERß)) in a luciferase reporter gene assay as well as high antiproliferative effects in MCF-7 (IC50 = 65.9 nM) and tamoxifen-resistant MCF-7/TamR (IC50 = 88.9 nM) breast cancer cells. All heterodimers exhibited two- to sevenfold higher antagonism at ERα (compared with ERß) and were superior to the acrylic acid precursor 8 in terms of ER antagonism and antiproliferative activity. It was demonstrated on the example of 31 that the compounds did not influence the ERα content in MCF-7 cells and therefore act as pure antiestrogens without downregulating potency. Possible interactions of the CBI at the receptor surface, which enhanced the biological activities, were evaluated using molecular docking studies.


Subject(s)
Breast Neoplasms , Estrogen Receptor alpha , Humans , Female , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/therapeutic use , Molecular Docking Simulation , Ligands , Structure-Activity Relationship , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Binding Sites
4.
STAR Protoc ; 4(2): 102170, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37115667

ABSTRACT

Prospective predictions of drug-resistant protein mutants could improve the design of therapeutics less prone to resistance. Here, we describe RESISTOR, an algorithm that uses structure- and sequence-based criteria to predict resistance mutations. We demonstrate the process of using RESISTOR to predict ERK2 mutants likely to arise in melanoma ablating the efficacy of the ERK1/2 inhibitor SCH779284. RESISTOR is included in the free and open-source computational protein design software OSPREY. For complete details on the use and execution of this protocol, please refer to Guerin et al..1.

5.
Br J Pharmacol ; 180(10): 1289-1303, 2023 05.
Article in English | MEDLINE | ID: mdl-36788128

ABSTRACT

Voltage-gated L-type Ca2+ -channels (LTCCs) are the target of Ca2+ -channel blockers (CCBs), which are in clinical use for the evidence-based treatment of hypertension and angina. Their cardiovascular effects are largely mediated by the Cav 1.2-subtype. However, based on our current understanding of their physiological and pathophysiological roles, Cav 1.3 LTCCs also appear as attractive drug targets for the therapy of various diseases, including treatment-resistant hypertension, spasticity after spinal cord injury and neuroprotection in Parkinson's disease. Since CCBs inhibit both Cav 1.2 and Cav 1.3, Cav 1.3-selective inhibitors would be valuable tools to validate the therapeutic potential of Cav 1.3 channel inhibition in preclinical models. Despite a number of publications reporting the discovery of Cav 1.3-selective blockers, their selectivity remains controversial. We conclude that at present no pharmacological tools exist that are suitable to confirm or refute a role of Cav 1.3 channels in cellular responses. We also suggest essential criteria for a small molecule to be considered Cav 1.3-selective.


Subject(s)
Calcium Channels, L-Type , Parkinson Disease , Humans , Calcium Channels, L-Type/physiology
6.
J Biol Chem ; 299(4): 102972, 2023 04.
Article in English | MEDLINE | ID: mdl-36738788

ABSTRACT

Cavß subunits are essential for surface expression of voltage-gated calcium channel complexes and crucially modulate biophysical properties like voltage-dependent inactivation. Here, we describe the discovery and characterization of a novel Cavß2 variant with distinct features that predominates in the retina. We determined spliced exons in retinal transcripts of the Cacnb2 gene, coding for Cavß2, by RNA-Seq data analysis and quantitative PCR. We cloned a novel Cavß2 splice variant from mouse retina, which we are calling ß2i, and investigated biophysical properties of calcium currents with this variant in a heterologous expression system as well as its intrinsic membrane interaction when expressed alone. Our data showed that ß2i predominated in the retina with expression in photoreceptors and bipolar cells. Furthermore, we observed that the ß2i N-terminus exhibited an extraordinary concentration of hydrophobic residues, a distinct feature not seen in canonical variants. The biophysical properties resembled known membrane-associated variants, and ß2i exhibited both a strong membrane association and a propensity for clustering, which depended on hydrophobic residues in its N-terminus. We considered available Cavß structure data to elucidate potential mechanisms underlying the observed characteristics but resolved N-terminus structures were lacking and thus, precluded clear conclusions. With this description of a novel N-terminus variant of Cavß2, we expand the scope of functional variation through N-terminal splicing with a distinct form of membrane attachment. Further investigation of the molecular mechanisms underlying the features of ß2i could provide new angles on the way Cavß subunits modulate Ca2+ channels at the plasma membrane.


Subject(s)
Alternative Splicing , Calcium Channels, L-Type , Retina , Animals , Mice , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Exons , Protein Subunits/metabolism , Retina/metabolism
7.
Cell Syst ; 13(10): 830-843.e3, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36265469

ABSTRACT

Resistance to pharmacological treatments is a major public health challenge. Here, we introduce Resistor-a structure- and sequence-based algorithm that prospectively predicts resistance mutations for drug design. Resistor computes the Pareto frontier of four resistance-causing criteria: the change in binding affinity (ΔKa) of the (1) drug and (2) endogenous ligand upon a protein's mutation; (3) the probability a mutation will occur based on empirically derived mutational signatures; and (4) the cardinality of mutations comprising a hotspot. For validation, we applied Resistor to EGFR and BRAF kinase inhibitors treating lung adenocarcinoma and melanoma. Resistor correctly identified eight clinically significant EGFR resistance mutations, including the erlotinib and gefitinib "gatekeeper" T790M mutation and five known osimertinib resistance mutations. Furthermore, Resistor predictions are consistent with BRAF inhibitor sensitivity data from both retrospective and prospective experiments using KinCon biosensors. Resistor is available in the open-source protein design software OSPREY.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Humans , Erlotinib Hydrochloride , Gefitinib/therapeutic use , ErbB Receptors/genetics , ErbB Receptors/metabolism , Proto-Oncogene Proteins B-raf/genetics , Protein Kinase Inhibitors/pharmacology , Mutation/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Retrospective Studies , Ligands , Prospective Studies , Drug Resistance, Neoplasm/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Algorithms
8.
J Comput Biol ; 29(12): 1346-1352, 2022 12.
Article in English | MEDLINE | ID: mdl-36099194

ABSTRACT

Computational, in silico prediction of resistance-conferring escape mutations could accelerate the design of therapeutics less prone to resistance. This article describes how to use the Resistor algorithm to predict escape mutations. Resistor employs Pareto optimization on four resistance-conferring criteria-positive and negative design, mutational probability, and hotspot cardinality-to assign a Pareto rank to each prospective mutant. It also predicts the mechanism of resistance, that is, whether a mutant ablates binding to a drug, strengthens binding to the endogenous ligand, or a combination of these two factors, and provides structural models of the mutants. Resistor is part of the free and open-source computational protein design software OSPREY.


Subject(s)
Algorithms , Proteins , Prospective Studies , Proteins/chemistry , Mutation , Ligands
9.
Mov Disord ; 37(2): 401-404, 2022 02.
Article in English | MEDLINE | ID: mdl-34647648

ABSTRACT

BACKGROUND: Spinocerebellar ataxia (SCA) is a progressive, autosomal dominant neurodegenerative disorder typically associated with CAG repeat expansions. OBJECTIVE: We assessed the pathogenicity of the novel, heterozygous missense variant p.Cys256Phe (C256F) in the pore-forming α1-subunit of the Cav2.1 Ca2+ channel found in a 63-year-old woman with SCA with no CAG repeat expansion. METHODS: We examined the effect of the C256F variant on channel function using whole-cell patch-clamp recordings in transfected tsA-201 cells. RESULTS: The maximum Ca2+ current density was significantly reduced in the mutant compared to wild-type, which could not be explained by lower expression levels of mutant Cav2.1 α1- protein. Together with a significant increase in current inactivation, this is consistent with a loss of channel function. Molecular modeling predicted disruption of a conserved disulfide bond through the C256F variant. CONCLUSIONS: Our results support the pathogenicity of the C256F variant for the SCA phenotype and provide further insight into Cav2.1 structure and function.


Subject(s)
Calcium Channels , Spinocerebellar Ataxias , Calcium Channels/genetics , Disulfides/metabolism , Female , Humans , Middle Aged , Mutation, Missense , Patch-Clamp Techniques , Phenotype , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/metabolism
10.
Biomedicines ; 9(12)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34944698

ABSTRACT

Mutations in the prodynorphin gene (PDYN) are associated with the development of spinocerebellar ataxia type 23 (SCA23). Pathogenic missense mutations are localized predominantly in the PDYN region coding for the dynorphin A (DynA) neuropeptide and lead to persistently elevated mutant peptide levels with neurotoxic properties. The main DynA target in the central nervous system is the kappa opioid receptor (KOR), a member of the G-protein coupled receptor family, which can elicit signaling cascades mediated by G-protein dissociation as well as ß-arrestin recruitment. To date, a thorough analysis of the functional profile for the pathogenic SCA23 DynA mutants at KOR is still missing. To elucidate the role of DynA mutants, we used a combination of assays to investigate the differential activation of G-protein subunits and ß-arrestin. In addition, we applied molecular modelling techniques to provide a rationale for the underlying mechanism. Our results demonstrate that DynA mutations, associated with a severe ataxic phenotype, decrease potency of KOR activation, both for G-protein dissociation as well as ß-arrestin recruitment. Molecular modelling suggests that this loss of function is due to disruption of critical interactions between DynA and the receptor. In conclusion, this study advances our understanding of KOR signal transduction upon DynA wild type or mutant peptide binding.

11.
MAbs ; 12(1): 1801230, 2020.
Article in English | MEDLINE | ID: mdl-32880207

ABSTRACT

Arginase 2 (ARG2) is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of L-arginine. The dysregulated expression of ARG2 within specific tumor microenvironments generates an immunosuppressive niche that effectively renders the tumor 'invisible' to the host's immune system. Increased ARG2 expression leads to a concomitant depletion of local L-arginine levels, which in turn leads to suppression of anti-tumor T-cell-mediated immune responses. Here we describe the isolation and characterization of a high affinity antibody (C0021158) that inhibits ARG2 enzymatic function completely, effectively restoring T-cell proliferation in vitro. Enzyme kinetic studies confirmed that C0021158 exhibits a noncompetitive mechanism of action, inhibiting ARG2 independently of L-arginine concentrations. To elucidate C0021158's inhibitory mechanism at a structural level, the co-crystal structure of the Fab in complex with trimeric ARG2 was solved. C0021158's epitope was consequently mapped to an area some distance from the enzyme's substrate binding cleft, indicating an allosteric mechanism was being employed. Following C0021158 binding, distinct regions of ARG2 undergo major conformational changes. Notably, the backbone structure of a surface-exposed loop is completely rearranged, leading to the formation of a new short helix structure at the Fab-ARG2 interface. Moreover, this large-scale structural remodeling at ARG2's epitope translates into more subtle changes within the enzyme's active site. An arginine residue at position 39 is reoriented inwards, sterically impeding the binding of L-arginine. Arg39 is also predicted to alter the pKA of a key catalytic histidine residue at position 160, further attenuating ARG2's enzymatic function. In silico molecular docking simulations predict that L-arginine is unable to bind effectively when antibody is bound, a prediction supported by isothermal calorimetry experiments using an L-arginine mimetic. Specifically, targeting ARG2 in the tumor microenvironment through the application of C0021158, potentially in combination with standard chemotherapy regimens or alternate immunotherapies, represents a potential new strategy to target immune cold tumors.


Subject(s)
Antibody Affinity , Arginase/chemistry , Single-Chain Antibodies/chemistry , Allosteric Regulation , Crystallography, X-Ray , Humans
12.
Sci Rep ; 10(1): 13804, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32796875

ABSTRACT

Pain remains a key therapeutic area with intensive efforts directed toward finding effective and safer analgesics in light of the ongoing opioid crisis. Amongst the neurotransmitter systems involved in pain perception and modulation, the mu-opioid receptor (MOR), a G protein-coupled receptor, represents one of the most important targets for achieving effective pain relief. Most clinically used opioid analgesics are agonists to the MOR, but they can also cause severe side effects. Medicinal plants represent important sources of new drug candidates, with morphine and its semisynthetic analogues as well-known examples as analgesic drugs. In this study, combining in silico (pharmacophore-based virtual screening and docking) and pharmacological (in vitro binding and functional assays, and behavioral tests) approaches, we report on the discovery of two naturally occurring plant alkaloids, corydine and corydaline, as new MOR agonists that produce antinociceptive effects in mice after subcutaneous administration via a MOR-dependent mechanism. Furthermore, corydine and corydaline were identified as G protein-biased agonists to the MOR without inducing ß-arrestin2 recruitment upon receptor activation. Thus, these new scaffolds represent valuable starting points for future chemical optimization towards the development of novel opioid analgesics, which may exhibit improved therapeutic profiles.


Subject(s)
Alkaloids/pharmacology , Alkaloids/therapeutic use , Analgesics , Aporphines/pharmacology , Aporphines/therapeutic use , Berberine Alkaloids/pharmacology , Berberine Alkaloids/therapeutic use , Pain/drug therapy , Phytotherapy , Receptors, Opioid, mu/agonists , Animals , Aporphines/chemistry , Berberine Alkaloids/chemistry , Cells, Cultured , Cricetulus , Disease Models, Animal , Mice , Molecular Targeted Therapy
13.
Pflugers Arch ; 472(8): 1105, 2020 08.
Article in English | MEDLINE | ID: mdl-32666275

ABSTRACT

The above article was published online with an error in Article title. Author mispronounced the name of a gene (CACNA1D instead of CACAN1D). The correct gene is presented above.

14.
Pflugers Arch ; 472(7): 755-773, 2020 07.
Article in English | MEDLINE | ID: mdl-32583268

ABSTRACT

The identification of rare disease-causing variants in humans by large-scale next-generation sequencing (NGS) studies has also provided us with new insights into the pathophysiological role of de novo missense variants in the CACNA1D gene that encodes the pore-forming α1-subunit of voltage-gated Cav1.3 L-type Ca2+ channels. These CACNA1D variants have been identified somatically in aldosterone-producing adenomas as well as germline in patients with neurodevelopmental and in some cases endocrine symptoms. In vitro studies in heterologous expression systems have revealed typical gating changes that indicate enhanced Ca2+ influx through Cav1.3 channels as the underlying disease-causing mechanism. Here we summarize the clinical findings of 12 well-characterized individuals with a total of 9 high-risk pathogenic CACNA1D variants. Moreover, we propose how information from somatic mutations in aldosterone-producing adenomas could be used to predict the potential pathogenicity of novel germline variants. Since these pathogenic de novo variants can cause a channel-gain-of function, we also discuss the use of L-type Ca2+ channel blockers as a potential therapeutic option.


Subject(s)
Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Calcium/metabolism , Channelopathies/genetics , Channelopathies/metabolism , Animals , Humans , Mutation/genetics , Phenotype
15.
Br J Cancer ; 123(4): 542-555, 2020 08.
Article in English | MEDLINE | ID: mdl-32439931

ABSTRACT

BACKGROUND: AKT, a critical effector of the phosphoinositide 3-kinase (PI3K) signalling cascade, is an intensely pursued therapeutic target in oncology. Two distinct classes of AKT inhibitors have been in clinical development, ATP-competitive and allosteric. Class-specific differences in drug activity are likely the result of differential structural and conformational requirements governing efficient target binding, which ultimately determine isoform-specific potency, selectivity profiles and activity against clinically relevant AKT mutant variants. METHODS: We have carried out a systematic evaluation of clinical AKT inhibitors using in vitro pharmacology, molecular profiling and biochemical assays together with structural modelling to better understand the context of drug-specific and drug-class-specific cell-killing activity. RESULTS: Our data demonstrate clear differences between ATP-competitive and allosteric AKT inhibitors, including differential effects on non-catalytic activity as measured by a novel functional readout. Surprisingly, we found that some mutations can cause drug resistance in an isoform-selective manner despite high structural conservation across AKT isoforms. Finally, we have derived drug-class-specific phosphoproteomic signatures and used them to identify effective drug combinations. CONCLUSIONS: These findings illustrate the utility of individual AKT inhibitors, both as drugs and as chemical probes, and the benefit of AKT inhibitor pharmacological diversity in providing a repertoire of context-specific therapeutic options.


Subject(s)
Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Adenosine Triphosphate/metabolism , Allosteric Regulation , Cell Line, Tumor , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , HT29 Cells , Humans , Models, Molecular , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Protein Conformation , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics
16.
Oncogene ; 39(5): 1080-1097, 2020 01.
Article in English | MEDLINE | ID: mdl-31591479

ABSTRACT

The transcription factor FOXO3 has been associated in different tumor entities with hallmarks of cancer, including metastasis, tumor angiogenesis, maintenance of tumor-initiating stem cells, and drug resistance. In neuroblastoma (NB), we recently demonstrated that nuclear FOXO3 promotes tumor angiogenesis in vivo and chemoresistance in vitro. Hence, inhibiting the transcriptional activity of FOXO3 is a promising therapeutic strategy. However, as no FOXO3 inhibitor is clinically available to date, we used a medium-throughput fluorescence polarization assay (FPA) screening in a drug-repositioning approach to identify compounds that bind to the FOXO3-DNA-binding-domain (DBD). Carbenoxolone (CBX), a glycyrrhetinic acid derivative, was identified as a potential FOXO3-inhibitory compound that binds to the FOXO3-DBD with a binding affinity of 19 µM. Specific interaction of CBX with the FOXO3-DBD was validated by fluorescence-based electrophoretic mobility shift assay (FAM-EMSA). CBX inhibits the transcriptional activity of FOXO3 target genes, as determined by chromatin immunoprecipitation (ChIP), DEPP-, and BIM promoter reporter assays, and real-time RT-PCR analyses. In high-stage NB cells with functional TP53, FOXO3 triggers the expression of SESN3, which increases chemoprotection and cell survival. Importantly, FOXO3 inhibition by CBX treatment at pharmacologically relevant concentrations efficiently repressed FOXO3-mediated SESN3 expression and clonogenic survival and sensitized high-stage NB cells to chemotherapy in a 2D and 3D culture model. Thus, CBX might be a promising novel candidate for the treatment of therapy-resistant high-stage NB and other "FOXO-resistant" cancers.


Subject(s)
Carbenoxolone/pharmacology , Drug Screening Assays, Antitumor , Forkhead Box Protein O3/antagonists & inhibitors , Forkhead Box Protein O3/metabolism , Neuroblastoma/pathology , Small Molecule Libraries , Carbenoxolone/chemistry , Cell Death/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Heat-Shock Proteins/metabolism , Humans , Molecular Weight , Neoplasm Staging , Transcription, Genetic/drug effects
17.
Bioorg Chem ; 95: 103495, 2020 01.
Article in English | MEDLINE | ID: mdl-31855822

ABSTRACT

Steroid sulfatase (STS) transforms hormone precursors into active steroids. Thus, it represents a target of intense research regarding hormone-dependent cancers. In this study, three ligand-based pharmacophore models were developed to identify STS inhibitors from natural sources. In a pharmacophore-based virtual screening of a curated molecular TCM database, lanostane-type triterpenes (LTTs) were predicted as STS ligands. Three traditionally used polypores rich in LTTs, i.e., Ganoderma lucidum Karst., Gloeophyllum odoratum Imazeki, and Fomitopsis pinicola Karst., were selected as starting materials. Based on eighteen thereof isolated LTTs a structure activity relationship for this compound class was established with piptolinic acid D (1), pinicolic acid B (2), and ganoderol A (3) being the most pronounced and first natural product STS inhibitors with IC50 values between 10 and 16 µM. Molecular docking studies proposed crucial ligand target interactions and a prediction tool for these natural compounds correlating with experimental findings.


Subject(s)
Enzyme Inhibitors/pharmacology , Lanosterol/pharmacology , Steryl-Sulfatase/antagonists & inhibitors , Triterpenes/pharmacology , Basidiomycota/chemistry , Coriolaceae/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Humans , Lanosterol/analogs & derivatives , Lanosterol/chemistry , Ligands , Models, Molecular , Molecular Structure , Reishi/chemistry , Steryl-Sulfatase/metabolism , Structure-Activity Relationship , Triterpenes/chemistry , Triterpenes/isolation & purification
18.
Elife ; 82019 12 04.
Article in English | MEDLINE | ID: mdl-31789593

ABSTRACT

FOXO transcription factors are critical regulators of cell homeostasis and steer cell death, differentiation and longevity in mammalian cells. By combined pharmacophore-modeling-based in silico and fluorescence polarization-based screening we identified small molecules that physically interact with the DNA-binding domain (DBD) of FOXO3 and modulate the FOXO3 transcriptional program in human cells. The mode of interaction between compounds and the FOXO3-DBD was assessed via NMR spectroscopy and docking studies. We demonstrate that compounds S9 and its oxalate salt S9OX interfere with FOXO3 target promoter binding, gene transcription and modulate the physiologic program activated by FOXO3 in cancer cells. These small molecules prove the druggability of the FOXO-DBD and provide a structural basis for modulating these important homeostasis regulators in normal and malignant cells.


Subject(s)
DNA/genetics , Forkhead Box Protein O3/genetics , Promoter Regions, Genetic/genetics , Small Molecule Libraries/pharmacology , Transcription, Genetic/drug effects , Binding Sites/genetics , Cell Line, Tumor , DNA/chemistry , DNA/metabolism , Forkhead Box Protein O3/chemistry , Forkhead Box Protein O3/metabolism , Gene Expression Profiling/methods , Gene Knockdown Techniques , HEK293 Cells , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Docking Simulation , Nucleic Acid Conformation , Protein Binding , Protein Domains , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism
19.
J Steroid Biochem Mol Biol ; 192: 105358, 2019 09.
Article in English | MEDLINE | ID: mdl-30965118

ABSTRACT

Humans are constantly exposed to a multitude of environmental chemicals that may disturb endocrine functions. It is crucial to identify such chemicals and uncover their mode-of-action to avoid adverse health effects. 11ß-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) catalyze the formation of cortisol and aldosterone, respectively, in the adrenal cortex. Disruption of their synthesis by exogenous chemicals can contribute to cardio-metabolic diseases, chronic kidney disease, osteoporosis, and immune-related disorders. This study applied in silico screening and in vitro evaluation for the discovery of xenobiotics inhibiting CYP11B1 and CYP11B2. Several databases comprising environmentally relevant pollutants, chemicals in body care products, food additives and drugs were virtually screened using CYP11B1 and CYP11B2 pharmacophore models. A first round of biological testing used hamster cells overexpressing human CYP11B1 or CYP11B2 to analyze 25 selected virtual hits. Three compounds inhibited CYP11B1 and CYP11B2 with IC50 values below 3 µM. The most potent inhibitor was epoxiconazole (IC50 value of 623 nM for CYP11B1 and 113 nM for CYP11B2, respectively); flurprimidol and ancymidol were moderate inhibitors. In a second round, these three compounds were tested in human adrenal H295R cells endogenously expressing CYP11B1 and CYP11B2, confirming the potent inhibition by epoxiconazole and the more moderate effects by flurprimidol and ancymidol. Thus, the in silico screening, prioritization of chemicals for initial biological tests and use of H295R cells to provide initial mechanistic information is a promising strategy to identify potential endocrine disruptors inhibiting corticosteroid synthesis. A critical assessment of human exposure levels and in vivo evaluation of potential corticosteroid disrupting effects by epoxiconazole is required.


Subject(s)
Cytochrome P-450 CYP11B2/antagonists & inhibitors , Databases, Pharmaceutical , Drug Discovery , Enzyme Inhibitors/pharmacology , Epoxy Compounds/pharmacology , Fungicides, Industrial/pharmacology , Steroid 11-beta-Hydroxylase/antagonists & inhibitors , Triazoles/pharmacology , Adenocarcinoma/drug therapy , Adenocarcinoma/enzymology , Adenocarcinoma/pathology , Adrenal Gland Neoplasms/drug therapy , Adrenal Gland Neoplasms/enzymology , Adrenal Gland Neoplasms/pathology , Cell Survival , Enzyme Inhibitors/chemistry , Epoxy Compounds/chemistry , Fungicides, Industrial/chemistry , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Triazoles/chemistry , Tumor Cells, Cultured
20.
Sci Adv ; 5(4): eaaw1567, 2019 04.
Article in English | MEDLINE | ID: mdl-31001591

ABSTRACT

Designer receptors exclusively activated by designer drugs (DREADDs) derived from muscarinic receptors not only are a powerful tool to test causality in basic neuroscience but also are potentially amenable to clinical translation. A major obstacle, however, is that the widely used agonist clozapine N-oxide undergoes conversion to clozapine, which penetrates the blood-brain barrier but has an unfavorable side effect profile. Perlapine has been reported to activate DREADDs at nanomolar concentrations but is not approved for use in humans by the Food and Drug Administration or the European Medicines Agency, limiting its translational potential. Here, we report that the atypical antipsychotic drug olanzapine, widely available in various formulations, is a potent agonist of the human M4 muscarinic receptor-based DREADD, facilitating clinical translation of chemogenetics to treat central nervous system diseases.


Subject(s)
Designer Drugs/pharmacology , Olanzapine/chemistry , Olanzapine/pharmacology , Receptor, Muscarinic M4/agonists , Receptor, Muscarinic M4/genetics , Selective Serotonin Reuptake Inhibitors/chemistry , Selective Serotonin Reuptake Inhibitors/pharmacology , Computer Simulation , Designer Drugs/chemistry , High-Throughput Screening Assays , Humans , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...